

#### **Maryland Department of the Environment**

# Update on Maryland's Draft Marcellus Shale Risk Assessment Findings

Presentation to the Marcellus Shale Advisory Commission



9/15/14





## Background and Introduction

- 1. Maryland's Risk Assessment (RA) was developed by the Departments in response to Commission request.
- 2. Draft Commission work plan used as a guide.
- 3. RA Team formed (Jan. 2014) included a medical doctor, engineer, biologists/ecologists, natural resource planners, and staff with expertise in water quality standards, toxicology, and statistics.







#### RA Methodology

Identified Phases in Unconventional Gas Well Development (UGWD)

66 Risks and 8 Accidents Provided

Grouped into 9 Risk Categories

Teams Formed to Evaluate Risks in Each Category by UGWD Phase

Individual RAs Conducted for each Risk Category

Individual RAs Rolled Up Into Overall Marcellus Risk Assessment







#### Phases of UGWD\*

- 1. Site Identification
- 2. Site preparation
- 3. Drilling, Casing, Cementing
- 4. Hydraulic Fracturing/Completion
- 5. Well Production/Processing
- 6. Site Reclamation and Abandonment

\*From Key Documents, including Ricardo (2013) and King



(2012) RAs, and NYSGEIS (2011).





#### Risks Considered\*

| Impact to     | From                                     | Activity                                                      | Team Addressing                     | Step  |
|---------------|------------------------------------------|---------------------------------------------------------------|-------------------------------------|-------|
| Air quality   | Methane                                  | Escape of methane during fracking and well completion         | TEAM 1 - Air Emissions              | 4     |
| Air quality   | Methane                                  | Escape of methane during drilling                             | TEAM 1 - Air Emissions              | 3     |
| Air quality   | VOCs                                     | On-site pit or pond storage                                   | TEAM 1 - Air Emissions              | 3,5   |
| Air quality   | Conventional air pollutants and CO2      | Compressor operation                                          | TEAM 1 - Air Emissions              | 3,5   |
| Air quality   | VOCs                                     | Condensate tank, dehydration unit operation                   | TEAM 1 - Air Emissions              | 3     |
| Air quality   | Diesel exhaust                           | Fuel burning equipment on the pad site                        | TEAM 1 - Air Emissions              | 2     |
| Air quality   | Dust                                     | Construction and traffic on dirt roads                        | TEAM 1 - Air Emissions              | 2,5,7 |
| Community     | Damage to roads                          | On-road vehicle activity during site development              | TEAM 1 - Air Emissions              | 2,7   |
| Surface water | Flowback and produced water constituents | Application of wastewater fro road deicing, dust suppression  | TEAM 2 - Vehicles and Roads         | 5     |
| Community     | Industrial landscape                     | Clearing of 3nd or caps well page, proclines, praporation pon | TEAM 2 - Vehicles and Roads         | 1,2   |
| Community     | Road congestion                          | On-road vehicle activity during sile development              | TEAM 2 - Vehicles and Roads         | 1,2   |
| Community     | Road congestion                          | On-road vehicle activity during drilling                      | TEAM 2 - Vehicles and Roads         | 3     |
| Community     | Road congestion                          | Transport off-site                                            | TEAM 2 - Vehicles and Roads         | 3,5   |
| Community     | Road congestion                          | On-road and off-road vehicle activity during fracking         | TEAM 2 - Vehicles and Roads         | 4     |
| Air quality   | Diesel exhaust                           | On road vehicles                                              | TEAM 2 - Vehicles and Roads         | 2,5   |
| Surface water | Drilling fluids and cuttings             | Disposal of drilling fluids, drill solids, and cuttings       | TEAM 3 - Drilling Fluids and Cuttir | 1,3   |
| Groundwater   | Drilling fluids and cuttings             | Disposal of drilling fluids, drill solids and cuttings        | TEAM 3 - Drilling Fluids and Cuttir | 1,3   |
| Surface water | Drilling fluids and cuttings             | Storage of drilling fluids at surface                         | TEAM 3 - Drilling Fluids and Cuttir | 1,3   |
| Surface water | Drilling fluids and cuttings             | Drilling equipment operation at surface                       | TEAM 3 - Drilling Fluids and Cuttir | 1,3   |
| Air quality   | Radioactivity                            | Handling and disposal of drill cuttings and flowback          | TEAM 3 - Drilling Fluids and Cuttir | 1,3   |
| Habitat       | Noise, light, traffic                    | Drilling                                                      | TEAM 3 - Drilling Fluids and Cuttir | 1,3   |
| Surface water | Flowback and produced water constituents | Leak or release from tank                                     | TEAM 3 - Drilling Fluids and Cuttir | 4,5   |

\*From scoping document and including additional risks identified by the Commission





### Grouped Risks

- 1. Air Emissions
- 2. Vehicles and Roads
- 3. Spills/Releases of Drilling Fluids and Cuttings
- 4. Fracking/Flowback Fluid Spills and Risks to Surface/Ground water
- 5. Noise/Visual Impacts
- 6. Chemical/Methane Releases from Wells or Formation
- 7. Water Withdrawal/Appropriations
- 8. Liquid and Solid Waste Treatment, Use and Disposal
- 9. Habitat Fragmentation, Ecological Impacts and Invasive species







#### RA for UGWD Phases

- 9 RA Teams formed one for each risk category.
- Teams described/quantified activities in each UGWD phase that influenced risks.
- Teams reviewed current scientific literature or other avail. info. on risks associated with UGWD.
- Teams evaluated current regulations and proposed BMPs effectiveness in mitigating risks.
- Teams ranked risks for each UGWD phase.







#### Factors Used to Rank Risks

| Probability                    | Definition                                                                                                                                                                           |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low                            | Rarely happens under ordinary conditions; not forecast to be encountered under foreseeable future circumstances in view of current knowledge and existing controls on gas extraction |
| Moderate                       | Occurs occasionally or could potentially occur under foreseeable circumstances if management or regulatory controls fall below best practice standards                               |
| High                           | Occurs frequently under ordinary conditions                                                                                                                                          |
| Insufficient Data to Determine | Lack of available data to confidently assign probability                                                                                                                             |

| Consequence                    | Definition                                                                                                                                                          |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minor                          | Slight adverse impact on people or the environment; causes no injury or illness                                                                                     |
| Moderate                       | Considerable adverse impact on people or the environment; could affect the health of persons in the immediate vicinity; localized or temporary environmental damage |
| Serious                        | Major adverse impact on people or the environment; could affect the health of persons in a large area; extensive or permanent environmental damage                  |
| Insufficient Data to Determine | Lack of available data to confidently assign consequence                                                                                                            |







#### Risk Ranking Methodology

# **Probability** Consequence

| Risk<br>Rank | Low      | Medium   | High     |  |
|--------------|----------|----------|----------|--|
| Minor        | Low      | Low      | Moderate |  |
| Moderate     | Low      | Moderate | High     |  |
| Serious      | Moderate | High     | High     |  |







#### Overall Marcellus Risk Assessment

- Findings from the individual teams used to develop an overall Executive Summary Level Marcellus Risk Assessment.
- Each of the team reports are attached as appendices.
- Detailed appendices can be used to identify UGWD phases that may need additional BMPs.







## Standardized Assumptions Used

- Individual Site Impacts, 150 well, and 450 wells.
- 15-acres Site disturbance per pad.
- 5-million gallons water/well.
- 30% flowback volume.
- Generally consistent assumptions for activity duration.
- Number of truck trips.







## Standardized Assumptions, cont.

| Well Pad<br>Activity                               | Scaling/<br>Coefficient | Early well pad scenario (All water transport by truck) |              |  |  |
|----------------------------------------------------|-------------------------|--------------------------------------------------------|--------------|--|--|
| Activity                                           | 6 wells/pad             | Heavy trucks                                           | Light trucks |  |  |
| Drill pad construction                             | 1                       | 45                                                     | 90           |  |  |
| Rig mobilization                                   | 2                       | 190                                                    |              |  |  |
| Drilling fluids                                    | 6                       | 270                                                    | 280          |  |  |
| Non-rig drilling equipment                         | 2                       | 90                                                     |              |  |  |
| Drilling (rig crew, etc.)                          | 6                       | 300                                                    | 840          |  |  |
| Completion chemicals                               | 6                       | 120                                                    |              |  |  |
| Completion equipment                               | 2                       | 10                                                     |              |  |  |
| Hydraulic fracturing equipment (trucks & tanks)    | 2                       | 350                                                    | 1956         |  |  |
| Hydraulic fracturing water hauling                 | 6                       | 6000                                                   |              |  |  |
| Hydraulic fracturing sand                          | 6                       | 138                                                    |              |  |  |
| Produced water disposal                            | 6                       | 1800                                                   |              |  |  |
| Final pad prep                                     | 1                       | 45                                                     | 50           |  |  |
| Miscellaneous                                      | ellaneous - 0           |                                                        | 400          |  |  |
| TOTAL truck trips<br>per well (1 well on 1<br>pad) | -                       | 9358                                                   | 3616         |  |  |



### Items Outside of RA Scope

- Health/Safety risks to workers on site (regulated by OSHA).
- Climate change risks.
- Risks from Downstream Infrastructure (natural gas liquefaction plants, gas main and transmission lines).
- A conclusion about the acceptability of the risk.







### Current Draft Report Timeline

- Expected to be released in the next two weeks.
- Will initiate a 30-day public review period.







## Preliminary Draft Findings

- Highlight regulatory standards or other appropriate measures used to rank risk.
- Identify scope of risk assessment (i.e., single, 150 and/or 450 wells).
- Present human risk findings (i.e., ecological/other risks not shown) for a single aspect in each risk category.
- Discuss key factors influencing RA findings.







#### MDE Preliminary Noise/Vibration Impacts from Vehicular Traffic

- Relied on noise standards exceedance at one's property line and truck decibel data to determine risk ranking.
- Considered noise from truck traffic for a single 6-well pad as noise not additive and anticipated distance between pads will attenuate noise.







## Noise/Vibration Impacts from Traffic

| Aspect            |                    |                   | UGWD Phase                       |                                |                              |            |                                      |
|-------------------|--------------------|-------------------|----------------------------------|--------------------------------|------------------------------|------------|--------------------------------------|
|                   | Agent/<br>chemical | Impact on         | Site identification/ preparation | Drilling, casing and cementing | HVHF /<br>Well<br>completion | Production | Well<br>abandonment<br>/ reclamation |
| Noise / vibration | Vehicle<br>traffic | Human / Community | Low                              | Moderate                       | High                         | Low        | Low                                  |

#### Key Factors Influencing RA findings:

- Differences in vehicular traffic between phases and associated truck decibel levels; and,
- Pad BMPs (e.g., setbacks) do not attenuate noise from road traffic.







# Preliminary Water Appropriations Impacts to Local/Regional Supply

- Primarily relied on the current regulatory program in protecting drinking water supply to determine risk ranking.
- Considered appropriations impacts from a single well and the 150 and 450 well development scenarios to evaluate sitespecific and regional impacts of water withdrawal.







# Appropriation Impacts to H<sub>2</sub>O Supply

| Aspect                 |                                                       |                                            | UGWD Phase                       |                                |                              |            |                              |
|------------------------|-------------------------------------------------------|--------------------------------------------|----------------------------------|--------------------------------|------------------------------|------------|------------------------------|
|                        | Agent/<br>chemical                                    | Impact on                                  | Site identification/ preparation | Drilling, casing and cementing | HVHF /<br>Well<br>completion | Production | Well abandonment/reclamation |
| Water<br>appropriation | Withdrawal<br>s from<br>surface or<br>groundwate<br>r | Local and regional drinking water supplies | N/A                              | Low                            | Low                          | N/A        | N/A                          |

#### Key Factors Influencing RA findings:

- Robust permits likely required for all wells; include annual/daily maxima and consider cumulative impacts.
- Both 150 and 450 wells water use small in regional supply context.
- Appropriation plan required as part of CGDP, also flowback recycling.







# Preliminary Groundwater Impacts from Methane Migration

- Primarily relied on scientific literature data on cementing/casing failure, observational studies of private well methane contamination in proximity to UGWD, and extensive BMP implementation to determine risk ranking.
- Considered pathways for contamination from a single well.







## Groundwater Impacts from Methane

|                                      |                    | Impact on     | UGWD Phase                       |                                |                              |            |                                |  |
|--------------------------------------|--------------------|---------------|----------------------------------|--------------------------------|------------------------------|------------|--------------------------------|--|
| Aspect                               | Agent/<br>chemical |               | Site identification/ preparation | Drilling, casing and cementing | HVHF /<br>Well<br>completion | Production | Well abandonment / reclamation |  |
| 2,000'<br>Private<br>Well<br>Setback | Methane            | Methane Human | NA                               | Low                            | Low                          | Moderate   | Low                            |  |
| 3,260'<br>Private<br>Well<br>Setback |                    | Hulliali      | NA                               | Low                            | Low                          | Low        | Low                            |  |

#### Key Factors Influencing RA findings:

- 1. Studies (Jackson 2013) finding decreased methane in groundwater 1 km from UGWD from either casing/cementing failure during well construction or over time.
- 2. Application of extensive BMPs.
- 3. Risks continue throughout production phase.





# Q&A







#### Matthew C. Rowe

**Deputy Director** 

**Science Services Administration** 

**Maryland Department of the Environment** 

matthew.rowe@maryland.gov

410-537-3578

